Technical Specification

SPM-A High efficiency circulator serials

www.altal.md

1. Product overview

1.1. Model Illustration

SPM25-6-130A		
SPM-A	Intelligent variable frequency circulating pump	
25	Inlet & outlet diameter 25mm 25mm	
6	Max head: 6m (flow 0 m³/h)	
130	Distance between inlet & outlet 130mm 130mm	

1.2. Product application

This series of products is specially designed for heating systems and can be applied to heating systems such as domestic hot water circulation systems, heating ventilation and air conditioning (HVAC) systems, such as:

- > Ground heating mixed water system
- > Air energy hot water circulation system
- > HVAC
- Boiler system
- > Heat pump
- Micro combined heat and power (CHP)

1.3. Main features

- ➢ EEI≤0.20 Part 3
- > Permanent magnet motor, intelligent frequency control
- > Compact size, easy for installation
- > Faster connector cable, easy for installation and maintenance.
- Proportional pressure mode
- Constant pressure mode
- Constant speed mode
- > AUTO mode

- > PWM external control available
- Low noise, low temperature

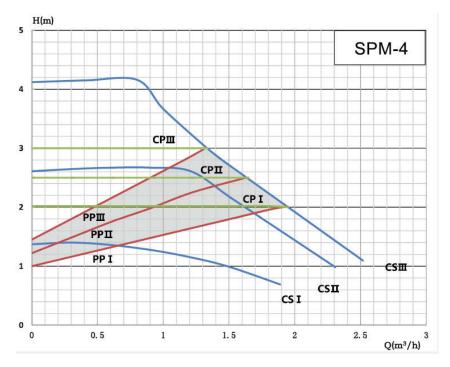
1.4. Working condition

- Liquid temperature: 0°C ~ +110°C
- ➢ Ambient temperature: -25℃ ~ +53℃
- > Max system pressure: 1.0MPa (10bar)
- Protection level: IP44
- Rated voltage/frequency: 230V、50/60Hz
- Insulation class: F
- Pumped liquid characteristics: clean liquid, free from solids and mineral oils, non-toxic, chemically neutral, close to the characteristics of water

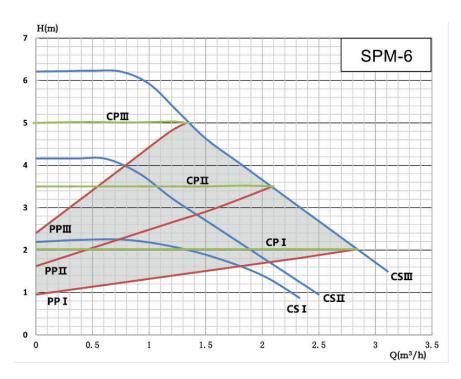
1.5. Pumped liquid

- > Heating water
- > Glycol solution with density \leq 50%
- ▶ Liquid p 6.5 ~ 8.5
- The medium does not contain solid impurities with a volume ratio of more than 0.01% and a particle size of not more than 0.1mm
- > The number of filter meshes shall not be less than 55 meshes

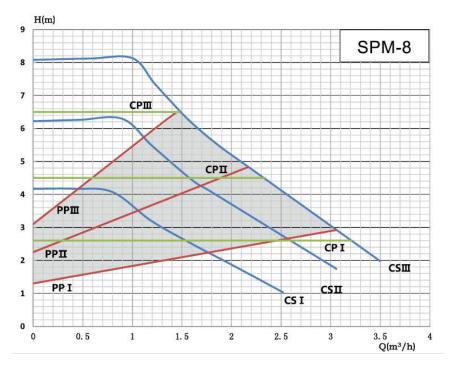
1.6. Technical data


Parameter	Data
Pump type	Centrifugal circulating pump (non-self-priming)
Single-phase power supply (AC/DC)	AC
Voltage	230V
Frequency	50/60Hz
Input power	4~65W
Current	0.04~0.65A
Rotation speed	1000~4000r/m
IP class	IP44
Insulation class	Class F
EEI	4/6m EEl≤0.20-Part3,
	8m EEl≤0.21-Part3
Max head	4m/6m/8 m
Max flow	4m: 2.4m (1.5m³/h) 6m: 3.8m (1.8m³/h) 8m: 5.5m (1.9m³/h)
Pipe size	DN20/ DN25/ DN32
Inlet&outlet union size	G1/ G1.5/ G2
Rotation direction	Clockwise seeing form the control box
Overload protection	Electronic overload protection
Inrush current pump internal solution	NTC+varistor+Relay

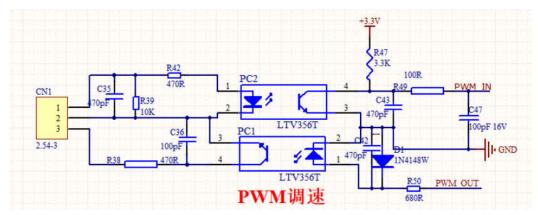
2. Product function


No.	ltem	Description
1	Running、control mode	PP, CP, CS, AUTO mode+PWM external speed control(optional)
2	Start	Under maximum torque
3	PWM external speed control((optional))	PWM signal automatically recognizes entering and exiting speed control mode
4	Display	LED digital tube, speed control mode display, fault code display
5	Protection	Overcurrent protection, over/under voltage protection, phase loss protection, locked rotor protection
6	PWM feedback	0—specified flow, feedback pump flow, fault feedback

2.1. Performance curve

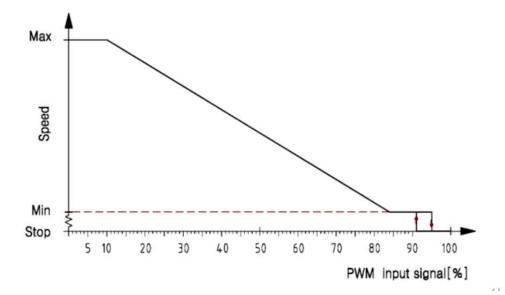

(1) SPM-4m

(2) SPM-6m



ltem	Model	Pipe size	Max input power	Max head	Max flow	Rated flow	Rated head	Eff.	EEI
		(mm)	W	m	m^3/h	m^3/h	m	%	≤0.20
1	SPM20-4-130A	DN20	25	4	2.2	1.5	2.4	40	≤0.20
2	SPM20-6-130A	DN20	45	6	2.5	1.8	3.8	40	≤0.20
3	SPM20-8-130A	DN20	63	8	2.5	1.9	5	40	≤0.21
4	SPM25-4-130A	DN25	25	4	2.5	1.5	2.4	40	≤0.20
5	SPM25-6-130A	DN25	45	6	3.5	1.8	3.8	40	≤0.20
6	SPM25-8-130A	DN25	63	8	3.5	1.9	5	40	≤0.21
7	SPM25-4-180A	DN25	25	4	2.5	1.5	2.4	40	≤0.20
8	SPM25-6-180A	DN25	45	6	3.5	1.8	3.8	40	≤0.20
9	SPM25-8-180A	DN25	63	8	3.8	1.9	5	40	≤0.21
10	SPM32-4-180A	DN32	25	4	3	1.5	2.4	40	≤0.20
11	SPM32-6-180A	DN32	45	6	3.5	1.8	3.8	40	≤0.20
12	SPM32-8-180A	DN32	63	8	4	1.9	5	40	≤0.21

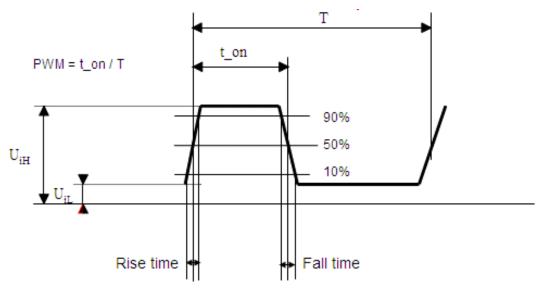
2.2. PWM


2.2.1. Basic Control Logic

When the PWM signal is connected, the operation of the water pump is controlled by the PWM signal. When there is no PWM signal, the operation of the water pump is controlled according to the internal control logic.

2.2.2. PWM input signal (PWM1 for heating)

When the PWM signal percentage (duty cycle) is high, the hysteresis can prevent the circulating pump from starting and stopping if the input signal fluctuates around the transition point. When the PWM signal percentage is low, the speed of the circulation pump is high for safety reasons. If the cables in the gas boiler system are damaged, the pump will continue to run at maximum speed to transfer heat from the primary heat exchanger. This is also suitable for heating the circulating pump to ensure that the pump can transfer heat in the event of a cable damage.


PWM input signal (%)

PWM input signal (%)	Pump status
0	the pump enter into non-PWM mode (internal control) operation, the system has no PWM signal input by default
0 <pwm≤10< td=""><td>Maximum speed: Max.</td></pwm≤10<>	Maximum speed: Max.
10 <pwm≤84< td=""><td>Variable speed: max. to min.</td></pwm≤84<>	Variable speed: max. to min.
84 <pwm≤91< td=""><td>Minimum speed: Min</td></pwm≤91<>	Minimum speed: Min
91 <pwm≤95< td=""><td>Hysteresis area: on/off</td></pwm≤95<>	Hysteresis area: on/off
95 <pwm≤100< td=""><td>Standby mode: off</td></pwm≤100<>	Standby mode: off

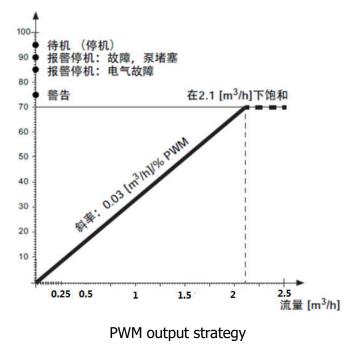
2.2.3. PWM Signal Characteristic Definition

2.2.3.1. PWM input

Signal Characteristic Definition		
Optocoupler isolation YES		
PWM input frequency	150—5000Hz	
High-level input voltageU _{iH}	2.8—5.5V	
Low-level input voltageU _{iL}	<1V	
High-level input currentl _H	<10mA	
PWM output duty cycle	0—100%	
Signal polarity	Fixed	
Length of signal line	<3m	
Rising and falling time	<t 1000<="" td=""></t>	

^{2.2.3.2.} PWM output

Signal Characteristic Definition		
Optocoupler isolation	YES	
PWM output frequency	75Hz±5%	
PWM output signal accuracy	±3%	
PWM output duty cycle	0—100%	
Output pole current drive capability	<10mA	
Output pole maximum pull-up voltage	<50V	
Signal polarity	fixed	
Length of signal line	<3m	

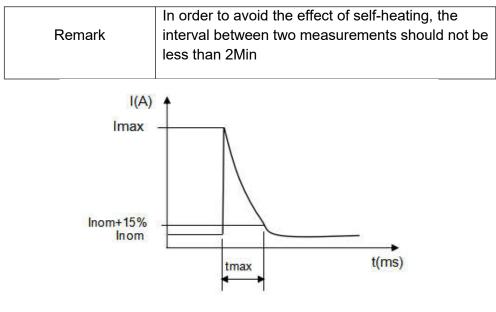

Remark: recommended value:

- > The peak voltage of PWM input is 2.8-5V, that is: conventional 3.3V or 5V.
- > PWM output: The pull-up voltage of the output pole is 5V. It is recommended to use a pull-up resistor with a resistance value of 4.7K.

The pull-up voltage of the output pole is 3.3V. It is recommended to use a pull-up resistor with a resistance value of 3K or 3.3K.

The pull-up voltage of the output pole is 15V. It is recommended to use a pull-up resistor with a resistance value of 10K.

2.2.4. PWM output


PWM output signal(%)	Pump status	Causes	
0	PWM output signal missing	PWM signal feedback line connection problem, or the water pump is powered off and shut down	
2	Stand-by	/	
5-70	Pump is running,return 0—Qmax, (specified flow)flow information	/	
75	Warning (low voltage 170-194V/high voltage 250-270V)	The power input voltage is at low or high voltage	
85	Alarm/stop/electric error(phase loss, overcurrent fault)	Motor UVW phase loss and UVW short circuit cause hardware overcurrent	
90	Alarm/stop/block error (stall/dry-running fault)	Rotor stuck, pump locked	
95	Standby/stop		
100	No PWM signal input	PWM signal line connection problem	
Remark	output signal frequency75Hz(±3%)		

Under/Over Voltage Protection Description:

- Under/overvoltage protection voltage value accuracy range ±5V
- Under-voltage reset: When the voltage is lower than 170V, the low-voltage protection of the electric pump stops running, and the voltage needs to be reset to 185V to start the electric pump normally (when the voltage changes dynamically)
- Overvoltage reset: When the voltage is higher than 270V, the high-voltage protection of the electric pump stops running, and the voltage needs to be reset to 265V to start the electric pump normally (when the voltage changes dynamically)

2.3 Start-up peak current

Pump model	Input voltage	lmax	Tmax
	180V	< 1.3A	< 6ms
All models	230V	< 1.6A	< 6ms
	265V	< 2.1A	< 6ms

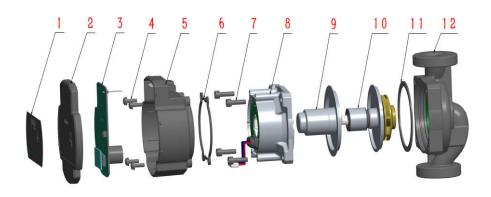
Peak current graph

2.4 Panel display

When there is no PWM signal input, the pump runs according to the maximum constant power curve. When there is a PWM signal input, it runs according to the PWM speed regulation logic. The right picture is an overview of the panel.

After the power is turned on, all green LED lights flash 3 times, and the speed control mode is displayed as follows:

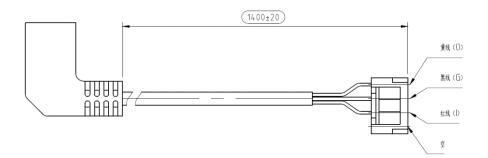
Pump status	Display	Pump status	Display
No PWM signal	PP CP 1 2 3	PWM signal enter in	PP CP 1 2 3


2.5 Fault display

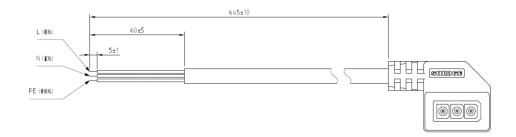
Fault description				
Protection	Description	Display		
Locked rotor protection	When the rotor shaft of the electric pump is stuck, the electric pump tries to restart, and restarts every 5S. When trying to restart, the electric pump reports a blocking error and the panel displays a fault code. The pump restarts in this cycle for 5 times and then stops.	PP CP 1 2 3		
Over/Under Voltage Protection	In abnormal conditions, when the input voltage is less than 165V or higher than 275V, the electric pump will enter the protection state and stop, and report an electrical fault and the panel will display a fault code, so as not to exceed the range and cause damage. When the voltage return to 160V-270V, the electric pump will resume running.	PP CP 1 2 3		
Phase loss protection	When the phase failure of the electric pump occurs, the electric pump tries to restart, and restarts every 1S. When trying to restart, the electric pump reports an electrical error and the panel displays a fault code. The pump restarts in this cycle for 5 times and then stops.	PP CP 1 2 3		
Overcurrent (Short Circuit) Protection	When the electric pump is short-circuited, overheated and other faults, the electric pump tries to restart, and restarts every 1S. When trying to restart, the electric pump reports an electrical error and the panel displays a fault code. The pump restarts in this cycle for 5 times and then stops.	PP CP 1 2 3		

3. Applied standards

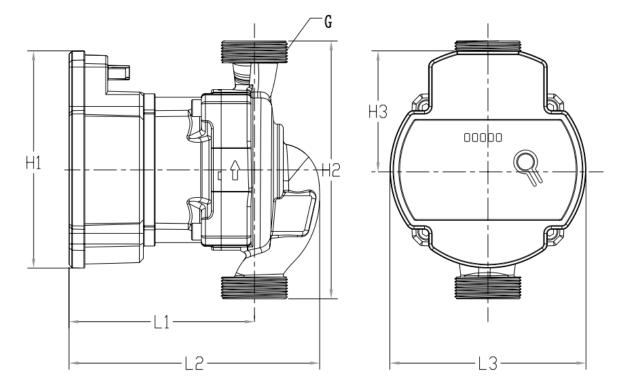
Q/SG 602, GB 4706.1-2005, GB 4706.71-2008, EMC Directive (2004/108/EC), ErP Directive (2009/125/EC), RoHS II Directive (2011/65/EU)


4. Pump structure

ltem	Part name
1	Display panel
2	Control box cover
3	Control electronics
4	Nuts
5	Control box
6	Control box sealing
7	Nuts
8	Motor
9	Rotor can assembly
10	Rotor assembly
11	Flat gasket
12	Pump body


5. Wiring diagram

5.1 Signal cable


The black wire of the PWM signal line is connected to the GND mark (ground) of the control board, the red wire is connected to the Input mark (input), and the yellow wire is connected to the Output mark (output).

5.2 Power cable

The brown wire of the power cord is connected to the L mark (live wire) of the control board, the blue wire is connected to the N mark (neutral wire), and the yellow-green wire is connected to the PE mark (ground).

6. Pump dimension

Model	Size (mm)								Inner box (kg)		Outer box		
	L1	L2	L3	H1	H2	H 3	G	Union	N W	GW	Q ty	Size (mm)	GW (kg)
SPM20-4-130A	94	127	99	110	130		G1	G1 to G3/4				320×29 0×260	16
SPM20-6-130A									1.6	2.0			
SPM20-8-130A													
SPM25-4-130A						6 0		G1 1/2 to G1			-		
SPM25-6-130A							G1 1/2		1.7	2.2			18
SPM25-8-130A											8		
SPM25-4-180A									1.9			410×29 0×240	
SPM25-6-180A					180					2.4			20
SPM25-8-180A													
SPM32-4-180A										2.0 2.75			
SPM32-6-180A							G2	G2 to G1 1/4	2.0				22.5
SPM32-8-180A													